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Abstract: Cloud Computing has been envisioned as the next generation architecture of IT Enterprise. In contrast to 

traditional solutions, where the IT services are under proper physical, logical and personnel controls, Cloud Computing 

moves the application software and databases to the large data centers, which provides the capability to use computing 
and storage resources on a rented basis and reduce the investments in an organization’s computing infrastructure. With 

all its benefits, cloud computing also brings with it concerns about the security and privacy of information extant on the 

cloud as a result of its size, structure, and geographical dispersion. Cloud computing security challenges and it’s also an 

issue to many researchers; first priority was to focus on security which is the biggest concern of organizations that are 

considering a move to the cloud. There are two major challenges to the Cloud Computing providers: first is How to 

guaranty a better data security and second is how we can keep the client private information confidential. When the 

data transferred to the Cloud we use standard encryption methods to secure the operations and the storage of the data. 

But to process data located on a remote server, the Cloud providers need to access the raw data. In this paper we are 

proposing an application of a method to execute operations on encrypted data without decrypting them which will 

provide us with the same results after calculations as if we have worked directly on the raw data.   
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I. INTRODUCTION 

 

Homomorphic encryption is the conversion of data into 

cipher text that can be analyzed and worked with as if it 

were still in its original form. Homomorphic encryptions 

allow complex mathematical operations to be performed 

on encrypted data without compromising the 

encryption. In mathematics, homomorphic describes the 

transformation of one data set into another while 
preserving relationships between elements in both sets. 

The term is derived from the Greek words for "same 

structure." Because the data in a homomorphic encryption 

scheme retains the same structure, identical mathematical 

operations whether they are performed on encrypted or 

decrypted data will yield equivalent results. Homomorphic 

encryption is expected to play an important part in cloud 

computing, allowing companies to store encrypted data in 

a public cloud and take advantage of the cloud provider’s 

analytic services [1]. 
 

Here is a very simple example of how a Homomorphic 

Encryption scheme might work in cloud computing: 
 

 Business XYZ has a very important data set (VIDS) 
that consists of the numbers 5 and 10.  To encrypt the 

data set, Business XYZ multiplies each element in the 

set by 2, creating a new set whose members are 10 and 

20. 

 Business XYZ sends the encrypted VIDS set to the 

cloud for safe storage.  A few months later, the 

government contacts Business XYZ and requests the 

sum of VIDS elements.    

 

 

 Business XYZ is very busy, so it asks the cloud 

provider to perform the operation.  The cloud provider, 

who only has access to the encrypted data set, finds the 

sum of 10 + 20 and returns the answer 30. 

 Business XYZ decrypts the cloud provider’s reply and 

provides the government with the decrypted answer, 

15. 
 

Our basic concept was to encrypt the data before sending 

them to the Cloud provider. But, this one will have to 

decrypt them each time he has to work on them.  The 

client will need to provide the private key to the server to 

decrypt the data before execute the calculations required, 

which might affect the confidentiality of data stored in the 

Cloud. The Homomorphic Encryption method is able to 

perform operations of encrypted data without decrypting 

them.   

In this work we focus on the application of Homomorphic 

Encryption method on the Cloud Computing security, 
particularly the possibility to execute the calculations of 

confidential data encrypted without decrypting them. In 

Section II, we are introducing the concept of Cloud 

Computing and the necessity to adopt Homomorphic 

Encryption to secure the calculation of data hosted by the 

Cloud provider. In section III, we will define 

Homomorphic Encryption and we will illustrate some 

examples of existing Homomorphic cryptosystems. In 

section IV, we will present our scheme and our 

implementation. The conclusion and perspectives will be 

mentioned in section V. 

http://searchcio-midmarket.techtarget.com/definition/ciphertext
http://searchsecurity.techtarget.com/definition/encryption
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/public-cloud
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II. CLOUD COMPUTING 

 

Definition [2]: By cloud computing we mean: The 

Information Technology (IT) model for computing, which 

is composed of all the IT components (hardware, software, 

networking, and services) that are necessary to enable 

development and delivery of cloud services via the Internet 

or a private network.   

This definition doesn’t mention any security notion of the 

data stored in the Cloud Computing even being a recent 

definition. Therefore we understand that the Cloud 
Computing is lacking security, confidentiality and 

visibility. To Provide Infrastructure (IaaS), Platform 

Service (PaaS) or Software (SaaS) as a Service is not 

sufficient if the Cloud provider does not guaranty a better 

security and confidentiality of customer’s data.    

By convention, we consider as Cloud Computing any 

treatment or storage of personal or professional information 

which are realized outside the concerned structure (i.e 

outside the company), to secure the Cloud means secure the 

treatments (calculations) and storage (databases hosted by 

the Cloud provider).  Cloud providers such as IBM, Google 
and Amazon use the virtualization on their Cloud platform 

and on the same server can coexist a virtualized storage and 

treatment space that belong to concurrent enterprises.    

The aspect of security and confidentiality must intervene to 

protect the data from each of the enterprises. Secure storage 

and treatment of data requires using a modern aspect of 

cryptography that has the criteria for treatment such as, the 

necessary time to respond to any request sent from the 

client and the size of an encrypted data which will be 

stored on the Cloud server.    

Our proposal is to encrypt data before sending it to the 

cloud provider, but to execute the calculations the data 
should be decrypted every time we need to work on it. 

Until now it was impossible to encrypt data and to trust a 

third party to keep them safe and able to perform distant 

calculations on them. So to allow the Cloud provider to 

perform the operations on encrypted data without 

decrypting them requires using the cryptosystems based on 

Homomorphic Encryption.   

 

III. HOMOMORPHIC ENCRYPTION 

 

Homomorphic Encryption systems are used to perform 
operations on encrypted data without knowing the private 

key (without decryption), the client is the only holder of the 

secret key.  When we decrypt the result of any operation, it 

is the same as if we had carried out the calculation on the 

raw data.    
 

Definition: An encryption is homomorphic, if: from Enc (a) 

and Enc (b) it is possible to compute Enc (f (a, b)), where f 

can be: +, ×, ⊕ and without using the private key. Among 

the Homomorphic encryption we distinguish, according to 

the operations that allows to assess on raw data, the 

additive Homomorphic encryption (only additions of the 

raw data) is the Pailler [3] and Goldwasser-Micalli [4] 

cryptosystems, and the multiplicative Homomorphic 
encryption (only products on raw data) is the RSA [5] and 

El Gamal [6] cryptosystems.   

A. History of Homomorphic Encryption 

The homomorphic property of various cryptosystems can 

be used to create secure voting systems,[7] collision-

resistant hash functions, private information retrieval 

schemes and enable widespread use of cloud computing by 

ensuring the confidentiality of processed data. There are 

several efficient, partially homomorphic cryptosystems, 

and two fully homomorphic, but less efficient 

cryptosystems. Although a cryptosystem which is 

unintentionally homomorphic can be subject to attacks on 

this basis, if treated carefully homomorphism can also be 
used to perform computations securely.  

 

Partially homomorphic cryptosystems: In the following 

examples, the notation  is used to denote the 

encryption of the message x.  

Unpadded RSA: If the RSA public key is modulus  and 

exponent , then the encryption of a message  is given 

by . The homomorphic 

property is then 

 
ElGamal: In the ElGamal cryptosystem, in a cyclic group 

of order with generator , if the public key is

, where , and  is the secret 

key, then the encryption of a message  is  

, for some random

. The homomorphic property 
is then 

 
Goldwasser–Micali: In the Goldwasser–Micali 

cryptosystem, if the public key is the modulus m and 

quadratic non-residue x, then the encryption of a bit b is

, for some random
.   The homomorphic 

property is then 

 
Where denotes addition modulo 2, (i.e. exclusive-or). 
Benaloh: In the Benaloh cryptosystem, if the public key is 

the modulus m and the base g with a blocksize of c, then 

the encryption of a message x is

, for some random
.   

The homomorphic property is then 

 
Paillier: In the Paillier cryptosystem, if the public key is 

the modulus m and the base g, then the encryption of a 

message x is , for some 
random .  

The homomorphic property is then 

 

Oth

er partially homomorphic cryptosystems: 

(a) Okamoto–Uchiyama cryptosystem, (b) Naccache–

Stern cryptosystem,(c)  Damgård–Jurik cryptosystem, (d) 

Boneh–Goh–Nissim cryptosystem, (e) Ishai-Paskin 

cryptosystem. 

https://en.wikipedia.org/wiki/RSA_cryptosystem
https://en.wikipedia.org/wiki/ElGamal_encryption
https://en.wikipedia.org/wiki/Goldwasser%E2%80%93Micali_cryptosystem
https://en.wikipedia.org/wiki/Goldwasser%E2%80%93Micali_cryptosystem
https://en.wikipedia.org/wiki/Exclusive_disjunction
https://en.wikipedia.org/wiki/Benaloh_cryptosystem
https://en.wikipedia.org/wiki/Paillier_cryptosystem
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Fully homomorphic encryption: Each of the examples 

listed above allows homomorphic computation of only one 

operation (either addition or multiplication) on plaintexts. 

A cryptosystem which supports both addition and 

multiplication (thereby preserving the ring structure of the 

plaintexts) is known as fully homomorphic encryption 

(FHE) and is far more powerful. Using such a scheme, any 

circuit can be homomorphically evaluated, effectively 

allowing the construction of programs which may be run 

on encryptions of their inputs to produce an encryption of 

their output. Since such a program never decrypts its input, 
it can be run by an untrusted party without revealing its 

inputs and internal state. The existence of an efficient and 

fully homomorphic cryptosystem would have great 

practical implications in the outsourcing of private 

computations, for instance, in the context of cloud 

computing. [8] 
 

The "homomorphic" part of a fully homomorphic 

encryption scheme can also be described in terms of 

category theory. If C is the category whose objects are 

integers (i.e., finite streams of data) and whose morphisms 

are computable functions, then (ideally) a fully 

homomorphic encryption scheme elevates an encryption 

function to a functor from C to itself. 
The utility of fully homomorphic encryption has been long 

recognized. The problem of constructing such a scheme 

was first proposed within a year of the development of 

RSA. [9] A solution proved more elusive; for more than 

30 years, it was unclear whether fully homomorphic 

encryption was even possible. During this period, the best 

result was the Boneh-Goh-Nissim cryptosystem which 

supports evaluation of an unlimited number of addition 

operations but at most one multiplication. 

Craig Gentry [10] using lattice-based cryptography 

showed the first fully homomorphic encryption scheme as 

announced by IBM on June 25, 2009. [11][12] His scheme 
supports evaluations of arbitrary depth circuits. His 

construction starts from a somewhat homomorphic 

encryption scheme using ideal lattices that is limited to 

evaluating low-degree polynomials over encrypted data. 

(It is limited because each ciphertext is noisy in some 

sense, and this noise grows as one adds and multiplies 

ciphertexts, until ultimately the noise makes the resulting 

ciphertext indecipherable.) He then shows how to modify 

this scheme to make it bootstrappable in particular, he 

shows that by modifying the somewhat homomorphic 

scheme slightly, it can actually evaluate its own decryption 
circuit, a self referential property. Finally, he shows that 

any bootstrappable somewhat homomorphic encryption 

scheme can be converted into a fully homomorphic 

encryption through a recursive self-embedding. In the 

particular case of Gentry's ideal-lattice-based somewhat 

homomorphic scheme, this bootstrapping procedure 

effectively "refreshes" the ciphertext by reducing its 

associated noise so that it can be used thereafter in more 

additions and multiplications without resulting in an 

indecipherable ciphertext. Gentry based the security of his 

scheme on the assumed hardness of two problems: certain 
worst-case problems over ideal lattices and the sparse (or 

low-weight) subset sum problem. Regarding performance, 

ciphertexts in Gentry's scheme remain compact insofar as 

their lengths do not depend at all on the complexity of the 

function that is evaluated over the encrypted data. The 

computational time only depends linearly on the number 

of operations performed. However, the scheme is 

impractical for many applications, because ciphertext size 

and computation time increase sharply as one increases the 

security level. To obtain 2k security against known 

attacks, the computation time and ciphertext size are high-

degree polynomials in k. Recently, Stehle and Steinfeld 

reduced the dependence on k substantially [13]. They 
presented optimizations that permit the computation to be 

only quasi-k3.5 per boolean gate of the function being 

evaluated. 

Gentry's Ph.D. thesis [14] provides additional details. 

Gentry also published a high-level overview of the van 

Dijk et al. construction (described below) in the March 

2010 issue of Communications of the ACM [15].  

In 2009, Marten van Dijk, Craig Gentry, Shai Halevi and 

Vinod Vaikuntanathan presented a second fully 

homomorphic encryption scheme,[16] which uses many of 

the tools of Gentry's construction, but which does not 
require ideal lattices. Instead, they show that the somewhat 

homomorphic component of Gentry's ideal lattice-based 

scheme can be replaced with a very simple somewhat 

homomorphic scheme that uses integers. The scheme is 

therefore conceptually simpler than Gentry's ideal lattice 

scheme, but has similar properties with regards to 

homomorphic operations and efficiency. The somewhat 

homomorphic component in the work of van Dijk et al. is 

similar to an encryption scheme proposed by Levieil and 

Naccache in 2008,[17] and also to one that was proposed 

by Bram Cohen in 1998.[18] Cohen's method is not even 

additively homomorphic, however. The Levieil-Naccache 
scheme is additively homomorphic, and can be modified 

to support also a small number of multiplications. In 2010, 

Nigel P. Smart and Frederik Vercauteren presented a 

refinement of Gentry's scheme giving smaller key and 

ciphertext sizes, but which is still not fully practical.[19] 

At the rump session of Eurocrypt 2010, Craig Gentry and 

Shai Halevi presented a working implementation of fully 

homomorphic encryption (i.e. the entire bootstrapping 

procedure) together with performance numbers[20] . 

In 2010 Riggio and Sicari presented a practical application 

of homomorphic encryption to a hybrid wireless 
sensor/mesh network. The system enables transparent 

multi-hop wireless backhauls that are able to perform 

statistical analysis of different kinds of data (temperature, 

humidity, etc.) coming from a WSN while ensuring both 

end-to-end encryption and hop-by-hop authentication [21]. 

Recently, Coron, Naccache and Tibouchi proposed a 

technique allowing reducing the public-key size of the van 

Dijk et al. scheme to 600 KB [22]. 

 

B. Additive Homomorphic Encryption 

A Homomorphic encryption is additive, if:   

    Enc (x ⊕ y) = Enc(x) ⊗ Enc(y)    
             l            l  

    Enc (Σ mi) = Π Enc (mi)      

            i=1         i=1    
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Example: Fig. 1 shows how Paillier Cryptosystem (1999) 

generates Key, Encrypt and Decrypt.  
 

 
Fig.1. Paillier Algorithm 

 
Suppose we have two ciphers C1 and C2 such that:   
 

  C1      =   gm1. r1
n   mod n 2 

 

  C2      =   gm2. r2
n   mod n 2 

 

  C1. C2 =gm1. r1
n   . gm2  . r2

n   mod n 2 = gm1+m2 (r1 r2)
n  mod n2 

        

So, Pailler cryptosystem realizes the property of additive 

Homomorphic encryption. An application of an additive 

Homomorphic encryption is electronic voting: Each vote 

is encrypted but only the “sum” is decrypted.   
 

C. Multiplicative Homomorphic Encryption 

A Homomorphic encryption is multiplicative, if:  

Enc (x ⊗ y) = Enc(x) ⊗ Enc(y) 

          l            l     

Enc (∏mi) = ∏ Enc (mi)                                                                    

         i=1       i=1    
 

Example: Fig. 2 shows how RSA Cryptosystem (1978) 

generates Key, Encrypt and Decrypt.  
 

The RSA algorithm involves four steps: key generation, 

key distribution, encryption and decryption. RSA involves 

a public key and a private key. The public key can be 

known by everyone and is used for encrypting messages. 

The intention is that messages encrypted with the public 

key can only be decrypted in a reasonable amount of time 

using the private key. 

 
Fig.2. RSA Algorithm 

 

The basic principle behind RSA is the observation that it is 

practical to find three very large positive integers’ e, d and 

n such that with modular exponentiation for all m: 

 
 and that even knowing e and n or even m it can be 

extremely difficult to find d. Additionally, for some 

operations it is convenient that the order of the two 

exponentiations can be changed and that this relation also 

implies:  
Suppose we have two ciphers C1 and C2 such that: 
 

C1   = m1
e mod n 

 

C2   = m2
e mod n 

 

C1. C2      = m1
e m2

e mod n = (m1 m2)
 e mod n 

 

RSA cryptosystem realize the properties of the 

multiplicative Homomorphic encryption, but it still has a 
lake of security, because if we assume that two ciphers C1, 

C2 corresponding respectively to the messages m1, m2, so: 
                                                                    

C1   = m1
e mod n 

 

C2   = m2
e mod n 

 

The client sends the pair (C1, C2) to the Cloud server the 
server will perform the calculations requested by the client 

and sends the encrypted result (C1 × C2) to the client. If the 

attacker intercepts two ciphers C1 and C2, which are 

encrypted with the same private key, he/she will be able to 

decrypt all messages exchanged between the server and 

the client. Because the Homomorphic encryption is 

multiplicative, i.e. the product of the ciphers equals the 

cipher of the product.  

https://en.wikipedia.org/wiki/Key_%28cryptography%29
https://en.wikipedia.org/wiki/Private_key
https://en.wikipedia.org/wiki/Modular_exponentiation
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Example: The application of RSA multiplicative 

Homomorphic encryption on two messages m1 and m2. 
 

Let, for p=3, q=5, e=9 and d=1 with block size = 1. Two 
messages m1 and m2 and their ciphers C1   and C2  

respectively, obtained using the RSA encryption. 
 

m1 = 589625   C1= 00 05 00 08 00 09 00 06 00 02 00 05 
 

 m2 = 236491  C2= 00 02 00 03 00 06 00 04 00 09 00 01 
 

The Block of C1 

In  binary system 

The Block of C2 

In  binary system 

00 05 => 00 0101 00 02 => 00 0010 

00 08 => 00 1000 00 03 => 00 0101 

00 09 => 00 1001 00 06 => 00 0110 

00 06 => 00 0110 00 04 => 00 0100 

00 02 => 00 0010 00 09 => 00 1001 

00 05 => 00 0101 00 01 => 00 0001 
 

The binary multiplication of the ciphers block by block is 

as follow: 
 

00 0101 x 00 0010 = 00 1010 00 10 

00 1000 x 00 0101 = 00 11000 00 24 

00 1001 x 00 0110 = 00 110110 00 54 

00 0110 x 00 0100 = 00 11000 00 24 

00 0010 x 00 1001 = 00 10010 00 18 

00 0101 x 00 0001 = 00 0101 00 05 

 

If we decrypt the cipher C1 X C2 with the private key, we 

get: 
C1 C2 = 00 10 00 02 00 04 00 05 00 04 00 02 00 04 00 01 

00 08 00 05 

So:  m1m2 = 10    2    4    5    4    2    4    1    8    5 
 

This is the exactly the same row message obtained by 

multiplying:  m1  x  m2 

 

m1   =   5  8  9  6  2  5 

m2   =   2  3  6  4  9  1 
 

m1 m2 = 10 24 54 24 18 5 (we are multiplying m1 x m2 

block by block). 

 

IV. SCHEME AND IMPLEMENTATION 

 

For all types of calculation on the data stored in the cloud, 

we must opt for the fully Homomorphic encryption which 

is able to execute all types of operations on encrypted data 
without decryption as shown in Fig. 3.  
 

In 2009 Craig Gentry of IBM has proposed the first 

encryption system "fully homomorphic" that evaluates an 

arbitrary number of additions and multiplications and thus 
calculate any type of function on encrypted data [23]. 
 

The application of fully Homomorphic encryption is an 

important stone in Cloud Computing security more 

generally, we could outsource the calculations on 
confidential data to the Cloud server, keeping the secret 

key that can decrypt the result of calculation.   

 
Fig.3. Homomorphic Encryption applied to the Cloud 

Computing 

 

In our implementation, we analyze the performance of the 

existing Homomorphic encryption cryptosystems, we are 

working on a virtual platform with ESX  as a Cloud 

server, a VPN network that links the Cloud to the client 

(enterprise), then later we started by simulating different 

scenarios using the Computer Algebra System Magma 

tools [24], focusing on: 
  

 The size of the public key and its impact on the size of 

the encrypted message. 

 The server delay of the request treatment according to 

the size of the encrypted message. 

 The result decrypting time of the request according to 

the cipher text size sent by the server. 

 

V.  CONCLUSION AND PERSPECTIVE 

 

The cloud computing security based on fully 

Homomorphic encryption is a new concept of security 

which enables providing results of calculations on 

encrypted data without knowing the raw data on which the 

calculation was carried out, with respect of the data 

confidentiality.   

 
Our work is based on the application of fully 

Homomorphic encryption to the Cloud Computing 

security considering: the analyse and the improvement of 

the existing cryptosystems to allow servers to perform 

various operations requested by the client, and The 

improvement of the complexity of Homomorphic 

encryption algorithms and compare the response time of 

the requests to the length of the public key.    
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