
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55218 891

Cloud Computing Security Applied by

Homomorphic Encryption

Santosh Kumar Singh
1
, Dr. P.K. Manjhi

2
, Dr. R.K. Tiwari

3

Research Scholar, Department of Computer Applications, Vinoba Bhave University, Hazaribag, India 1

Assistant Professor, University Department of mathematics, Vinoba Bhave University, Hazaribag, India 2

Professor, H.O.D CSE, R.V.S College of Engg & Tech., Jamshedpur, India 3

Abstract: Cloud Computing has been envisioned as the next generation architecture of IT Enterprise. In contrast to

traditional solutions, where the IT services are under proper physical, logical and personnel controls, Cloud Computing

moves the application software and databases to the large data centers, which provides the capability to use computing
and storage resources on a rented basis and reduce the investments in an organization’s computing infrastructure. With

all its benefits, cloud computing also brings with it concerns about the security and privacy of information extant on the

cloud as a result of its size, structure, and geographical dispersion. Cloud computing security challenges and it’s also an

issue to many researchers; first priority was to focus on security which is the biggest concern of organizations that are

considering a move to the cloud. There are two major challenges to the Cloud Computing providers: first is How to

guaranty a better data security and second is how we can keep the client private information confidential. When the

data transferred to the Cloud we use standard encryption methods to secure the operations and the storage of the data.

But to process data located on a remote server, the Cloud providers need to access the raw data. In this paper we are

proposing an application of a method to execute operations on encrypted data without decrypting them which will

provide us with the same results after calculations as if we have worked directly on the raw data.

Keywords: Homomorphic Encryption; Cloud Computing; Security; Confidentiality; Integrity.

I. INTRODUCTION

Homomorphic encryption is the conversion of data into

cipher text that can be analyzed and worked with as if it

were still in its original form. Homomorphic encryptions

allow complex mathematical operations to be performed

on encrypted data without compromising the

encryption. In mathematics, homomorphic describes the

transformation of one data set into another while
preserving relationships between elements in both sets.

The term is derived from the Greek words for "same

structure." Because the data in a homomorphic encryption

scheme retains the same structure, identical mathematical

operations whether they are performed on encrypted or

decrypted data will yield equivalent results. Homomorphic

encryption is expected to play an important part in cloud

computing, allowing companies to store encrypted data in

a public cloud and take advantage of the cloud provider’s

analytic services [1].

Here is a very simple example of how a Homomorphic

Encryption scheme might work in cloud computing:

 Business XYZ has a very important data set (VIDS)
that consists of the numbers 5 and 10. To encrypt the

data set, Business XYZ multiplies each element in the

set by 2, creating a new set whose members are 10 and

20.

 Business XYZ sends the encrypted VIDS set to the

cloud for safe storage. A few months later, the

government contacts Business XYZ and requests the

sum of VIDS elements.

 Business XYZ is very busy, so it asks the cloud

provider to perform the operation. The cloud provider,

who only has access to the encrypted data set, finds the

sum of 10 + 20 and returns the answer 30.

 Business XYZ decrypts the cloud provider’s reply and

provides the government with the decrypted answer,

15.

Our basic concept was to encrypt the data before sending

them to the Cloud provider. But, this one will have to

decrypt them each time he has to work on them. The

client will need to provide the private key to the server to

decrypt the data before execute the calculations required,

which might affect the confidentiality of data stored in the

Cloud. The Homomorphic Encryption method is able to

perform operations of encrypted data without decrypting

them.

In this work we focus on the application of Homomorphic

Encryption method on the Cloud Computing security,
particularly the possibility to execute the calculations of

confidential data encrypted without decrypting them. In

Section II, we are introducing the concept of Cloud

Computing and the necessity to adopt Homomorphic

Encryption to secure the calculation of data hosted by the

Cloud provider. In section III, we will define

Homomorphic Encryption and we will illustrate some

examples of existing Homomorphic cryptosystems. In

section IV, we will present our scheme and our

implementation. The conclusion and perspectives will be

mentioned in section V.

http://searchcio-midmarket.techtarget.com/definition/ciphertext
http://searchsecurity.techtarget.com/definition/encryption
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/public-cloud

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55218 892

II. CLOUD COMPUTING

Definition [2]: By cloud computing we mean: The

Information Technology (IT) model for computing, which

is composed of all the IT components (hardware, software,

networking, and services) that are necessary to enable

development and delivery of cloud services via the Internet

or a private network.

This definition doesn’t mention any security notion of the

data stored in the Cloud Computing even being a recent

definition. Therefore we understand that the Cloud
Computing is lacking security, confidentiality and

visibility. To Provide Infrastructure (IaaS), Platform

Service (PaaS) or Software (SaaS) as a Service is not

sufficient if the Cloud provider does not guaranty a better

security and confidentiality of customer’s data.

By convention, we consider as Cloud Computing any

treatment or storage of personal or professional information

which are realized outside the concerned structure (i.e

outside the company), to secure the Cloud means secure the

treatments (calculations) and storage (databases hosted by

the Cloud provider). Cloud providers such as IBM, Google
and Amazon use the virtualization on their Cloud platform

and on the same server can coexist a virtualized storage and

treatment space that belong to concurrent enterprises.

The aspect of security and confidentiality must intervene to

protect the data from each of the enterprises. Secure storage

and treatment of data requires using a modern aspect of

cryptography that has the criteria for treatment such as, the

necessary time to respond to any request sent from the

client and the size of an encrypted data which will be

stored on the Cloud server.

Our proposal is to encrypt data before sending it to the

cloud provider, but to execute the calculations the data
should be decrypted every time we need to work on it.

Until now it was impossible to encrypt data and to trust a

third party to keep them safe and able to perform distant

calculations on them. So to allow the Cloud provider to

perform the operations on encrypted data without

decrypting them requires using the cryptosystems based on

Homomorphic Encryption.

III. HOMOMORPHIC ENCRYPTION

Homomorphic Encryption systems are used to perform
operations on encrypted data without knowing the private

key (without decryption), the client is the only holder of the

secret key. When we decrypt the result of any operation, it

is the same as if we had carried out the calculation on the

raw data.

Definition: An encryption is homomorphic, if: from Enc (a)

and Enc (b) it is possible to compute Enc (f (a, b)), where f

can be: +, ×, ⊕ and without using the private key. Among

the Homomorphic encryption we distinguish, according to

the operations that allows to assess on raw data, the

additive Homomorphic encryption (only additions of the

raw data) is the Pailler [3] and Goldwasser-Micalli [4]

cryptosystems, and the multiplicative Homomorphic
encryption (only products on raw data) is the RSA [5] and

El Gamal [6] cryptosystems.

A. History of Homomorphic Encryption

The homomorphic property of various cryptosystems can

be used to create secure voting systems,[7] collision-

resistant hash functions, private information retrieval

schemes and enable widespread use of cloud computing by

ensuring the confidentiality of processed data. There are

several efficient, partially homomorphic cryptosystems,

and two fully homomorphic, but less efficient

cryptosystems. Although a cryptosystem which is

unintentionally homomorphic can be subject to attacks on

this basis, if treated carefully homomorphism can also be
used to perform computations securely.

Partially homomorphic cryptosystems: In the following

examples, the notation is used to denote the

encryption of the message x.

Unpadded RSA: If the RSA public key is modulus and

exponent , then the encryption of a message is given

by . The homomorphic

property is then

ElGamal: In the ElGamal cryptosystem, in a cyclic group

of order with generator , if the public key is

, where , and is the secret

key, then the encryption of a message is

, for some random

. The homomorphic property
is then

Goldwasser–Micali: In the Goldwasser–Micali

cryptosystem, if the public key is the modulus m and

quadratic non-residue x, then the encryption of a bit b is

, for some random
. The homomorphic

property is then

Where denotes addition modulo 2, (i.e. exclusive-or).
Benaloh: In the Benaloh cryptosystem, if the public key is

the modulus m and the base g with a blocksize of c, then

the encryption of a message x is

, for some random
.

The homomorphic property is then

Paillier: In the Paillier cryptosystem, if the public key is

the modulus m and the base g, then the encryption of a

message x is , for some
random .

The homomorphic property is then

Oth

er partially homomorphic cryptosystems:

(a) Okamoto–Uchiyama cryptosystem, (b) Naccache–

Stern cryptosystem,(c) Damgård–Jurik cryptosystem, (d)

Boneh–Goh–Nissim cryptosystem, (e) Ishai-Paskin

cryptosystem.

https://en.wikipedia.org/wiki/RSA_cryptosystem
https://en.wikipedia.org/wiki/ElGamal_encryption
https://en.wikipedia.org/wiki/Goldwasser%E2%80%93Micali_cryptosystem
https://en.wikipedia.org/wiki/Goldwasser%E2%80%93Micali_cryptosystem
https://en.wikipedia.org/wiki/Exclusive_disjunction
https://en.wikipedia.org/wiki/Benaloh_cryptosystem
https://en.wikipedia.org/wiki/Paillier_cryptosystem

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55218 893

Fully homomorphic encryption: Each of the examples

listed above allows homomorphic computation of only one

operation (either addition or multiplication) on plaintexts.

A cryptosystem which supports both addition and

multiplication (thereby preserving the ring structure of the

plaintexts) is known as fully homomorphic encryption

(FHE) and is far more powerful. Using such a scheme, any

circuit can be homomorphically evaluated, effectively

allowing the construction of programs which may be run

on encryptions of their inputs to produce an encryption of

their output. Since such a program never decrypts its input,
it can be run by an untrusted party without revealing its

inputs and internal state. The existence of an efficient and

fully homomorphic cryptosystem would have great

practical implications in the outsourcing of private

computations, for instance, in the context of cloud

computing. [8]

The "homomorphic" part of a fully homomorphic

encryption scheme can also be described in terms of

category theory. If C is the category whose objects are

integers (i.e., finite streams of data) and whose morphisms

are computable functions, then (ideally) a fully

homomorphic encryption scheme elevates an encryption

function to a functor from C to itself.
The utility of fully homomorphic encryption has been long

recognized. The problem of constructing such a scheme

was first proposed within a year of the development of

RSA. [9] A solution proved more elusive; for more than

30 years, it was unclear whether fully homomorphic

encryption was even possible. During this period, the best

result was the Boneh-Goh-Nissim cryptosystem which

supports evaluation of an unlimited number of addition

operations but at most one multiplication.

Craig Gentry [10] using lattice-based cryptography

showed the first fully homomorphic encryption scheme as

announced by IBM on June 25, 2009. [11][12] His scheme
supports evaluations of arbitrary depth circuits. His

construction starts from a somewhat homomorphic

encryption scheme using ideal lattices that is limited to

evaluating low-degree polynomials over encrypted data.

(It is limited because each ciphertext is noisy in some

sense, and this noise grows as one adds and multiplies

ciphertexts, until ultimately the noise makes the resulting

ciphertext indecipherable.) He then shows how to modify

this scheme to make it bootstrappable in particular, he

shows that by modifying the somewhat homomorphic

scheme slightly, it can actually evaluate its own decryption
circuit, a self referential property. Finally, he shows that

any bootstrappable somewhat homomorphic encryption

scheme can be converted into a fully homomorphic

encryption through a recursive self-embedding. In the

particular case of Gentry's ideal-lattice-based somewhat

homomorphic scheme, this bootstrapping procedure

effectively "refreshes" the ciphertext by reducing its

associated noise so that it can be used thereafter in more

additions and multiplications without resulting in an

indecipherable ciphertext. Gentry based the security of his

scheme on the assumed hardness of two problems: certain
worst-case problems over ideal lattices and the sparse (or

low-weight) subset sum problem. Regarding performance,

ciphertexts in Gentry's scheme remain compact insofar as

their lengths do not depend at all on the complexity of the

function that is evaluated over the encrypted data. The

computational time only depends linearly on the number

of operations performed. However, the scheme is

impractical for many applications, because ciphertext size

and computation time increase sharply as one increases the

security level. To obtain 2k security against known

attacks, the computation time and ciphertext size are high-

degree polynomials in k. Recently, Stehle and Steinfeld

reduced the dependence on k substantially [13]. They
presented optimizations that permit the computation to be

only quasi-k3.5 per boolean gate of the function being

evaluated.

Gentry's Ph.D. thesis [14] provides additional details.

Gentry also published a high-level overview of the van

Dijk et al. construction (described below) in the March

2010 issue of Communications of the ACM [15].

In 2009, Marten van Dijk, Craig Gentry, Shai Halevi and

Vinod Vaikuntanathan presented a second fully

homomorphic encryption scheme,[16] which uses many of

the tools of Gentry's construction, but which does not
require ideal lattices. Instead, they show that the somewhat

homomorphic component of Gentry's ideal lattice-based

scheme can be replaced with a very simple somewhat

homomorphic scheme that uses integers. The scheme is

therefore conceptually simpler than Gentry's ideal lattice

scheme, but has similar properties with regards to

homomorphic operations and efficiency. The somewhat

homomorphic component in the work of van Dijk et al. is

similar to an encryption scheme proposed by Levieil and

Naccache in 2008,[17] and also to one that was proposed

by Bram Cohen in 1998.[18] Cohen's method is not even

additively homomorphic, however. The Levieil-Naccache
scheme is additively homomorphic, and can be modified

to support also a small number of multiplications. In 2010,

Nigel P. Smart and Frederik Vercauteren presented a

refinement of Gentry's scheme giving smaller key and

ciphertext sizes, but which is still not fully practical.[19]

At the rump session of Eurocrypt 2010, Craig Gentry and

Shai Halevi presented a working implementation of fully

homomorphic encryption (i.e. the entire bootstrapping

procedure) together with performance numbers[20] .

In 2010 Riggio and Sicari presented a practical application

of homomorphic encryption to a hybrid wireless
sensor/mesh network. The system enables transparent

multi-hop wireless backhauls that are able to perform

statistical analysis of different kinds of data (temperature,

humidity, etc.) coming from a WSN while ensuring both

end-to-end encryption and hop-by-hop authentication [21].

Recently, Coron, Naccache and Tibouchi proposed a

technique allowing reducing the public-key size of the van

Dijk et al. scheme to 600 KB [22].

B. Additive Homomorphic Encryption

A Homomorphic encryption is additive, if:

 Enc (x ⊕ y) = Enc(x) ⊗ Enc(y)
 l l

 Enc (Σ mi) = Π Enc (mi)

 i=1 i=1

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55218 894

Example: Fig. 1 shows how Paillier Cryptosystem (1999)

generates Key, Encrypt and Decrypt.

Fig.1. Paillier Algorithm

Suppose we have two ciphers C1 and C2 such that:

 C1 = gm1. r1
n mod n 2

 C2 = gm2. r2
n mod n 2

 C1. C2 =gm1. r1
n . gm2 . r2

n mod n 2 = gm1+m2 (r1 r2)
n mod n2

So, Pailler cryptosystem realizes the property of additive

Homomorphic encryption. An application of an additive

Homomorphic encryption is electronic voting: Each vote

is encrypted but only the “sum” is decrypted.

C. Multiplicative Homomorphic Encryption

A Homomorphic encryption is multiplicative, if:

Enc (x ⊗ y) = Enc(x) ⊗ Enc(y)

 l l

Enc (∏mi) = ∏ Enc (mi)

 i=1 i=1

Example: Fig. 2 shows how RSA Cryptosystem (1978)

generates Key, Encrypt and Decrypt.

The RSA algorithm involves four steps: key generation,

key distribution, encryption and decryption. RSA involves

a public key and a private key. The public key can be

known by everyone and is used for encrypting messages.

The intention is that messages encrypted with the public

key can only be decrypted in a reasonable amount of time

using the private key.

Fig.2. RSA Algorithm

The basic principle behind RSA is the observation that it is

practical to find three very large positive integers’ e, d and

n such that with modular exponentiation for all m:

 and that even knowing e and n or even m it can be

extremely difficult to find d. Additionally, for some

operations it is convenient that the order of the two

exponentiations can be changed and that this relation also

implies:
Suppose we have two ciphers C1 and C2 such that:

C1 = m1
e mod n

C2 = m2
e mod n

C1. C2 = m1
e m2

e mod n = (m1 m2)
 e mod n

RSA cryptosystem realize the properties of the

multiplicative Homomorphic encryption, but it still has a
lake of security, because if we assume that two ciphers C1,

C2 corresponding respectively to the messages m1, m2, so:

C1 = m1
e mod n

C2 = m2
e mod n

The client sends the pair (C1, C2) to the Cloud server the
server will perform the calculations requested by the client

and sends the encrypted result (C1 × C2) to the client. If the

attacker intercepts two ciphers C1 and C2, which are

encrypted with the same private key, he/she will be able to

decrypt all messages exchanged between the server and

the client. Because the Homomorphic encryption is

multiplicative, i.e. the product of the ciphers equals the

cipher of the product.

https://en.wikipedia.org/wiki/Key_%28cryptography%29
https://en.wikipedia.org/wiki/Private_key
https://en.wikipedia.org/wiki/Modular_exponentiation

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55218 895

Example: The application of RSA multiplicative

Homomorphic encryption on two messages m1 and m2.

Let, for p=3, q=5, e=9 and d=1 with block size = 1. Two
messages m1 and m2 and their ciphers C1 and C2

respectively, obtained using the RSA encryption.

m1 = 589625 C1= 00 05 00 08 00 09 00 06 00 02 00 05

 m2 = 236491 C2= 00 02 00 03 00 06 00 04 00 09 00 01

The Block of C1

In binary system

The Block of C2

In binary system

00 05 => 00 0101 00 02 => 00 0010

00 08 => 00 1000 00 03 => 00 0101

00 09 => 00 1001 00 06 => 00 0110

00 06 => 00 0110 00 04 => 00 0100

00 02 => 00 0010 00 09 => 00 1001

00 05 => 00 0101 00 01 => 00 0001

The binary multiplication of the ciphers block by block is

as follow:

00 0101 x 00 0010 = 00 1010 00 10

00 1000 x 00 0101 = 00 11000 00 24

00 1001 x 00 0110 = 00 110110 00 54

00 0110 x 00 0100 = 00 11000 00 24

00 0010 x 00 1001 = 00 10010 00 18

00 0101 x 00 0001 = 00 0101 00 05

If we decrypt the cipher C1 X C2 with the private key, we

get:
C1 C2 = 00 10 00 02 00 04 00 05 00 04 00 02 00 04 00 01

00 08 00 05

So: m1m2 = 10 2 4 5 4 2 4 1 8 5

This is the exactly the same row message obtained by

multiplying: m1 x m2

m1 = 5 8 9 6 2 5

m2 = 2 3 6 4 9 1

m1 m2 = 10 24 54 24 18 5 (we are multiplying m1 x m2

block by block).

IV. SCHEME AND IMPLEMENTATION

For all types of calculation on the data stored in the cloud,

we must opt for the fully Homomorphic encryption which

is able to execute all types of operations on encrypted data
without decryption as shown in Fig. 3.

In 2009 Craig Gentry of IBM has proposed the first

encryption system "fully homomorphic" that evaluates an

arbitrary number of additions and multiplications and thus
calculate any type of function on encrypted data [23].

The application of fully Homomorphic encryption is an

important stone in Cloud Computing security more

generally, we could outsource the calculations on
confidential data to the Cloud server, keeping the secret

key that can decrypt the result of calculation.

Fig.3. Homomorphic Encryption applied to the Cloud

Computing

In our implementation, we analyze the performance of the

existing Homomorphic encryption cryptosystems, we are

working on a virtual platform with ESX as a Cloud

server, a VPN network that links the Cloud to the client

(enterprise), then later we started by simulating different

scenarios using the Computer Algebra System Magma

tools [24], focusing on:

 The size of the public key and its impact on the size of

the encrypted message.

 The server delay of the request treatment according to

the size of the encrypted message.

 The result decrypting time of the request according to

the cipher text size sent by the server.

V. CONCLUSION AND PERSPECTIVE

The cloud computing security based on fully

Homomorphic encryption is a new concept of security

which enables providing results of calculations on

encrypted data without knowing the raw data on which the

calculation was carried out, with respect of the data

confidentiality.

Our work is based on the application of fully

Homomorphic encryption to the Cloud Computing

security considering: the analyse and the improvement of

the existing cryptosystems to allow servers to perform

various operations requested by the client, and The

improvement of the complexity of Homomorphic

encryption algorithms and compare the response time of

the requests to the length of the public key.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55218 896

REFERENCES

[1] http://searchsecurity.techtarget.com/definition/homomorphic-

encryption

[2] Vic (J.R.) Winkler, ”Securing the Cloud, Cloud Computer Security

Techniques and Tactics”, Elsevier, 2011. ISBN-9781597495929.

[3] Pascal Paillier. Public-key cryptosystems based on composite

degree residuosity classes. In 18th Annual Eurocrypt Conference

(EUROCRYPT'99), Prague, Czech Republic , volume 1592, 1999

[4] Julien Bringe and al. An Application of the Goldwasser-Micali

Cryptosystem to Biometric Authentication, Springer-Verlag, 2007.

[5] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining

digital signatures and public key cryptosystems. Communications

of the ACM, 21(2) :120-126, 1978. Computer Science, pages 223-

238. Springer, 1999.

[6] Taher ElGamal. A public key cryptosystem and a signature scheme

based on discrete logarithms. IEEE Transactions on Information

Theory, 469-472, 1985.

[7] Ron Rivest (2002-10-29). "Lecture Notes 15: Voting,

Homomorphic Encryption" (http:/ / web. mit. edu/ 6. 857/ OldStuff/

Fall02/ handouts/ L15-voting. pdf).

[8] Daniele Micciancio (2010-03-01). "A First Glimpse of

Cryptography's Holy Grail" (http:/ / cacm. acm. org/ magazines/

2010/3/76275-a-first-glimpse-of-cryptographys-holy-grail/ fulltext).

Association for Computing Machinery. p. 96, 2010.

[9] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and

privacy homomorphisms. In Foundations of Secure Computation,

1978.

[10] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices

(http:/ / domino. research. ibm. com/ comm/ research_projects. nsf/

pages/ security. homoenc. html/ $FILE/ stocdhe. pdf). In the 41st

ACM Symposium on Theory of Computing (STOC), 2009.

[11] http:/ / www-03. ibm. com/ press/ us/ en/ pressrelease/ 27840. Wss

[12] Michael Cooney (2009-06-25). "IBM touts encryption innovation"

(http:/ / www. computerworld. com/ s/ article/ 9134823/

IBM_touts_encryption_innovation?taxonomyId=152&

intsrc=kc_top& taxonomyName=compliance). Computer World,

2009.

[13] Damien Stehle; Ron Steinfeld (2010-05-19). "Faster Fully

Homomorphic Encryption" (http:/ / eprint. iacr. org/ 2010/ 299)

(PDF). International Association for Cryptologic Research, 2010.

[14] Craig Gentry. "A Fully Homomorphic Encryption Scheme (Ph.D.

thesis)" (http:/ / crypto. stanford. edu/ craig/) .

[15] Craig Gentry. "Computing Arbitrary Functions of Encrypted Data"

(http:/ / crypto. stanford. edu/ craig/ easy-fhe. pdf). Association for

Computing Machinery.

[16] Marten van Dijk; Craig Gentry, Shai Halevi, and Vinod

Vaikuntanathan 2009, "Fully Homomorphic Encryption over the

Integers" (http:/ / eprint. iacr. org/ 2009/ 616) (PDF). International

Association for Cryptologic Research, 2010.

[17] "Cryptographic Test Correction" (http:/ / en. wikipedia. org/ wiki/

Cryptographic_Test_Correction). .

[18] Bram Cohen. "Simple Public Key Encryption" (http:/ / en.

wikipedia. org/ wiki/ Cohen's_cryptosystem). .

[19] News report (http:/ / www. zdnet. co. uk/ news/ emerging-tech/

2010, british-researcher-cracks-crypto-problem-40089057) http:/ /

www. info. unicaen. fr/ M2-AMI/ articles-2009-2010/ smart. pdf

paper] pdf slides (http:/ / www. math. leidenuniv. nl/ ~dfreeman/

smart. pdf) .

[20] Craig Gentry; Shai Halevi. "A Working Implementation of Fully

Homomorphic Encryption" (http:/ / eurocrypt2010rump. cr. yp. to/

9854ad3cab48983f7c2c5a2258e27717. pdf) .

[21] Roberto Riggio; Sabrina Sicari. "Secure Aggregation in Hybrid

Mesh/Sensor Networks" (http:/ / disi. unitn. it/ ~riggio/ lib/ exe/

fetch. php?media=publications:sasn2009. pdf) .

[22] Jean-Sébastien Coron; David Naccache, Mehdi Tibouchi. "Public

Key Compression and Modulus Switching for Fully Homomorphic

Encryption over the Integers" http:/ / eprint. iacr. org/ 2011/ 440.

[23] Craig Gentry Thesis, A Fully Homomorphic Encryption Scheme,

2009.

[24] WiebBosma, John Cannon, and Catherine Playoust. The Magma

algebra system I: The user language. J. Symbolic Comput., 24(3-4):

235-265, 1997. Computational algebra and number theory, London,

1993.

BIOGRAPHY

Santosh Kumar Singh is a Research

Scholar in the Department of Computer

Applications, Vinoba Bhave University,

Hazaribag, Jharkhand. He received M.

Phil (Computer Science) degree in 2011

and Qualified Doctoral (Ph. D) Eligibility

Test 2014 Vinoba Bhave University,

Hazaribag. His research interests are

Cloud Computing, Parallel and Distributed Computing etc.

http://searchsecurity.techtarget.com/definition/homomorphic-encryption
http://searchsecurity.techtarget.com/definition/homomorphic-encryption

